
A Survey of Recursive Pseudo-Exhaustive Two-Pattern
Generation Using BIST

B.Kamalasoundari M.E.,
Assistant Professor, PSNA College of Engineering Technology, Tamilnadu, India

kamalasoundari@gmail.com
Abstract—Pseudo-exhaustive pattern generators for built-in

self-test (BIST) provide high fault coverage of detectable com-
binational faults with much fewer test vectors than exhaustive
generation. In � �-adjacent bit pseudo-exhaustive test sets, all
� binary combinations appear to all adjacent -bit groups of
inputs. With recursive pseudoexhaustive generation, all � �-ad-
jacent bit pseudoexhaustive tests are generated for and
more than one modules can be pseudo-exhaustively tested in
parallel. In order to detect sequential (e.g., stuck-open) faults
that occur into current CMOS circuits, two-pattern tests are
exercised. Also, delay testing, commonly used to assure correct
circuit operation at clock speed requires two-pattern tests. In this
paper a pseudoexhaustive two-pattern generator is presented,
that recursively generates all two-pattern � �-adjacent bit
pseudoexhaustive tests for all . To the best of our knowl-
edge, this is the first time in the open literature that the subject of
recursive pseudoexhaustive two-pattern testing is being dealt with.
A software-based implementation with no hardware overhead is
also presented.

Index Terms—Built-in self-test (BIST), pseudoexchaustive two-
pattern testing, test pattern generation.

I. INTRODUCTION

 In current IC technology, highly complex chips have
low accessibility of internal nodes; this makes traditional

testing techniques costly and ineffective. Built-in self-test
(BIST) schemes have been proposed as a powerful alterna-
tive to external testing. BIST techniques employ on-chip test
generation and response verification; therefore the need for
expensive external testing equipment is reduced. Furthermore,
with BIST at-speed testing can be achieved; thus, the quality of
the delivered ICs is increased [1].

Exhaustive and pseudoexhaustive test generators provide
for complete fault coverage without the need for fault sim-
ulation or deterministic test pattern generation. Numerous
publications address the problem of pseudoexhaustive testing
as an alternative to competing schemes, e.g., exhaustive or
pseudorandom testing. Srinivasal et al. have posed bounds
on the length of pseudoexhaustive tests [2] and proposed
BIST pattern generators [3]. Chattopadhay proposed cellular
automata pseudoexhaustive test generators in [4]. Kagaris and
Tragoudas proposed pseudoexhaustive test generators using
linear feedback shift registers (LFSRs) whose polynomials are

Fig. 1. (6,3)-pseudo-exhaustive testing.

not primitive, using a low number of seeds in [5]. Shaer et al.
proposed partitioning for combinational as well as sequential
[6] circuits. Novak et al. proposed generators to generate
CA-based pseudoexhaustive generators in [7]. Gupta et al. [8],
Stroele [9], and [10] propose other pseudoexhaustive BIST
pattern generators.

Testing of blocks of certain types of circuits, such as digital
signal processing systems, data path architectures, embedded
memories and others, involves partitioning of the inputs into
physically adjacent groups [8]. In this case, the pseudo-exhaus-
tive objective can be reformulated in such way that the n-bit
space is covered if for all contiguous -bit sub-
spaces, each of the patterns occurs at least once (see Fig. 1).
An -adjacent bit pseudo-exhaustive test set (PETS) is a
set of -bit patterns in which all -bit patterns appear into all
adjacent -bit groups. A module C that can be pseudo-exhaus-
tively tested with an -pseudo-exhaustive test set is called

-pseudo-exhaustively testable and is called the cone size
of C. For example, array [11] and Booth [12] multipliers
have been shown to be (, 8)-pseudo-exhaustively testable
modules.

Iterative logic arrays (ILAs) [13] are another type of mod-
ules where application of pseudo-exhaustive testing has been
proved efficient. ILAs are structures consisting of identical logic
cells, connected in a regular manner. The inherent regularity of
ILAs utilizes the fast derivation of compact and efficient test
sets. In many cases ILAs can be tested with a constant number
of test vectors irrespective of their size, a property known as
C-testability [14]. Test pattern generation and design-for-testa-
bility for ILAs has attained extensive consideration during the
last decades [15]–[17].

In modern VLSI circuits, containing millions of transistors,
the utilization of the same BIST pattern generator to test more
than one module can drive down the cost of BIST hardware [18].
Modules whose inputs are driven (during BIST) from the same
pattern generator may have different cone sizes. Two solutions
have been proposed to this direction.

One solution is to utilize recursive pseudoexhaustive testing
[18]; with recursive pseudoexhaustive testing, -PETS are
generated for all . In the literature, recursive
pseudoexhaustive testing was introduced by Rajski and Tyszer

 BIST is used to make faster, less-expensive
integrated circuit manufacturing tests. The IC has a function
that verifies all or a portion of the internal functionality of the
IC. In some cases, this is valuable to customers, as well. For
example, a BIST mechanism is provided in advanced
fieldbus systems to verify functionality.

in [18], where the utilization of an array of XOR gates and a
binary counter was proposed, to recursively generate all
pseudoexhaustive test sets for in optimal time. Dasgupta
et al. [19] proposed a cellular automata-based generator for the
same purpose.

An alternative solution is generic pseudoexhaustive testing,
introduced in [10]. A generic pseudoexhaustive generator can
generate a -PETS for any value of by enabling a respec-
tive signal PE . The pseudoexhaustive generator of [10] was
also utilized for recursive pseudoexhaustive testing (also termed
progressive pseudoexhaustive testing in [10]) and was shown to
outperform the schemes proposed in [18], [19] in terms of hard-
ware overhead—time to complete the test tradeoff.

BIST pattern generators are commonly discerned into
one-pattern and two-pattern. One-pattern generators target the
detection of combinational (mainly stuck-at) faults. However,
it has been proved that many failure mechanisms that appear
in CMOS circuits cannot be modelled by the stuck-at fault
paradigm [20], [21]. Furthermore, increasing performance
requirements emphasize the need to operate digital circuits at
their highest possible speeds. This motivates testing for the
correct temporal behavior, commonly known as delay testing.
The detection of these faults requires two pattern tests. Various
published schemes target the efficient generation of two-pat-
tern tests [22]–[35]. BIST two-pattern generators have been
proposed in [25] and [31]–[35].

In this paper, we start by presenting a generic pseudo-
exhaustive two-pattern generation scheme. A generic pseudo-
exhaustive two-pattern generation scheme generates an

-pseudoexhaustive two-pattern test for any value of
, by enabling a proper input signal PE , . To the

best of our knowledge, this is the first generic pseudoexhaustive
two-pattern generator to be presented in the open literature.
Next, we generalize the generic pseudoexhaustive two-pattern
generation scheme into a progressive two-pattern generator
that generates all -pseudoexhaustive two-pattern tests
for all , for to . We call this scheme recursive pseu-
doexhaustive two-pattern generation scheme. To the best of our
knowledge, the proposed recursive pseudoexhaustive two-pat-
tern generation scheme is the first to be presented in the open
literature, therefore it comes to complement the one-pattern
recursive pseudoexhaustive generators presented in [10], [18],
and [19] in the territory of two-pattern testing. Although no
recursive pseudoexhaustive two-pattern generation scheme has
been proposed in the open literature, we perform a comparison
with possible extension of the schemes proposed in [10], [18],
and [19] to provide for recursive two-pattern pseudoexhaustive
testing. From the comparison, it is derived that the proposed
scheme presents lower hardware overhead than the possible
extensions of the schemes in [10], [18], and [19].

The layout of this paper is as follows. In Section II, the pro-
posed generic pseudoexhaustive two-pattern generator is pre-
sented. In Section III, the generic pseudoexhaustive generator
is extended to recursively generate all -pseudoexhaustive
two-pattern tests. In Section IV, the hardware implementation
and the test latency of the presented scheme are calculated. In
Section V, we consider schemes that have been proposed in
the open literature for recursive pseudoexhaustive one-pattern

generation and possible extensions in the two-pattern domain;
comparisons of such extensions reveal that the proposed scheme
presents lower hardware overhead. A software implementation
of the presented scheme is presented in Section VI. Finally, in
Section VII we conclude the paper.

II. GENERIC PSEUDOEXHAUSTIVE TWO-PATTERN TESTING

A generic pseudo-exhaustive two-pattern generator is a
module with inputs and outputs that
can generate a two-pattern -pseudo-exhaustive test set for
any value of , .

At each time at most one of the signals may be enabled.
When is enabled, then a -pseudoex-
haustive two-pattern test is generated. For example, for ,
Table I presents the pseudoexhaustive test set generated for each
value of the signals. In Table I, in the first column we
present the value of the signals; in the second column we
present the generated pseudoexhaustive test, while in the third
column we present the span of the exhaustive subspaces. For
example, in the fifth row of Table I, where is enabled, a
(12,4)-pseudoexhaustive test set is generated and a 4-bit exhaus-
tive test set is applied to the 4-bit groups , , and

. It is trivial to see that, in this case, the span of outputs
also receives all 4-bit combinations (since the value

of the output is equal to the value of the output); the
same holds true for all 4-bit spans, i.e., , , etc.,
therefore, all 4-bit groups receive an exhaustive 4-bit test set.

It should be noted that, in case the size of the pseudoexhaus-
tive test set does not exactly divide n (for , this is the
case for , 7, 8, 9, 10, 11) then the span of bits is divided
into groups of k bits, that take the same valus and the re-
maining (mod) high-order bits have the same values with the
(mod) low-order bits of the low-order groups. For example,
for , the bits of the output of the generator have
the same values with the bits. Henceforth, if an ex-
haustive -bit two-pattern test is generated at the low-order bits
of the output of the generator, then an -pseudoexhaustive
two-pattern test is generated at the outputs of the generator.

The proposed generic pseudoexhaustive two-pattern gener-
ator is presented in Fig. 2.

It consists of an -stage accumulator, comprising an adder
and a register (the carry-in signal of the adder is driven by the
output of a module termed carry-generator, or c_gen for short),
an -stage generic counter, and a control module.

In the sequel, we shall present the implementation and func-
tionality of the modules comprising the generic pseudoexhaus-
tive two-pattern generator of Fig. 2.

A. Generic Counter Module
An -stage generic counter takes as inputs a basic clock

signal (clk) and n signals ; if all signals ,
are disabled, then the generic counter operates as an

-stage binary counter. The same holds true in case .
When is activated, for some value of , ,

the stages , , , etc., are clocked by the basic clock signal.
Therefore, the generic counter generates all
combinations to all groups of adjacent bits, i.e., operates as

consecutive -stage counters. When C_clk_disable

TABLE I
GENERIC ���� ��-PSEUDOEXHAUSTIVE GENERATOR

TABLE II
OPERATION OF A 12-STAGE GENERIC COUNTER

Fig. 2. Generic pseudoexhaustive two-pattern generator.

is enabled, the clk signal is disabled, and the generic counter
remains idle. In Table II, we present the operation of a 12-stage
generic counter for the various values of the signals.

From the operation of the generic counter we can see that it
can generate either one-pattern exhaustive test set (when
is enabled), or one-pattern -pseudoexhaustive test set
when is enabled.

A 12-stage generic counter is presented in Fig. 3(a). It con-
sists of 12 generic counter cells (GCC) and an OR grid. The GCC
is a modified version of the typical counter cell and its imple-
mentation for the case of the ripple counter is also presented
in Fig. 3(a). Implementations for other counter designs can be
found in [10].

If is enabled, the stage of the counter is clocked by the
basic clock signal. Therefore, is enabled if and only if i is
a multiple of . Therefore, the select signal of every stage i is
the output of an OR gate, whose inputs are the signals , for
all that divide . If i is a prime number (is divided only by 1)
there is no need for an OR gate, and the Select signal is driven by
the signal . For example, the OR grid of a 12-stage generic
counter is presented in Fig. 3(b).

B. c_gen Module
The purpose of the c_gen module is to provide for the carry

input of the accumulator, depending on the value of the
signals. When is enabled then the input
of the accumulator is fed from the carry output of its th stage.
Hence, the low-order stages of the accumulator operate as a

-stage accumulator comprising a 1’s complement adder, while
the higher-order bits also take as a carry input the output
of the -stage carry output of the accumulator.

Fig. 3. (a) 12-stage selective counter and GCC (ripple counter implementation). (b) 12-stage OR grid.

Fig. 4. c_gen (carry generator) module.

The c_gen module takes as inputs the carry outputs
of the stages of the accumulator and the signals

. When is enabled, the is enabled to
feed the inputs of the carry-in signal of the accumulator. The
c_gen module can be implemented in hardware utilizing pass
transistor logic as shown in Fig. 4. The AND gate is disabled
during the first semi-period of the clock to avoid oscillations
and sequential behavior of the adder [35].

For example, let us consider the case where is enabled
in a 12-stage generator. In this case, the accumulator opera-
tion can be emulated by three 4-stage sub-accumulators, where
the carry input of each sub-accumulator is driven by the carry-
output of the previous sub-accumulator. It is trivial to show that
if a 4-stage pseudoexhaustive two-pattern test is generated at the
4 low-order stages of the accumulator, then a (12,4)-pseudoex-
haustive test is generated at the outputs of the generator. In the
sequel we shall present how the -stage exhaustive two-pattern
test is generated at the -stage low-order stages when
is generated, using the control module.

C. Control Module

The purpose of the control module is to assure that a -stage
two-pattern test is generated at the low-order stages of the gen-
erator. If this is achieved, then, following the above reasoning,

-pseudoxhaustive test is generated. The operation of the

Fig. 5. Algorithm for two-pattern test generation.

control module is based on the algorithm presented in Fig. 5 in
a C-like notation.

The Acc function performs the accumulation operation with
one’s complement addition. Therefore, the TPG algorithm sim-
ulates the operation of an accumulator whose inputs are driven
by a binary counter. The counter counts from 1 to (Phase
1, steps 3–5) and then it is reset; this is repeated until the outputs
of the counter are equal to and the outputs of the accu-
mulator are equal to (Phase 1, step 6). Next (Phase 2) the
counter is incremented to and the accumulator repeatedly
accumulates until its output is equal to . Finally
(Phase 3) all transitions to and from zero are generated, by reset-
ting the accumulator and incrementing the counter every second
clock cycle. In [35] the TPG algorithm was proved to generate
all -bit 2-pattern tests within clock cycles,
i.e., within the theoretically minimum time. The operation of the
TPG algorithm for stages is illustrated in Table III.

The control module takes as inputs the signals reset,
, , , and generates the signals C_clock_dis-

able, C_reset, , end_k_bit_test. It operates as follows
(in the sequel, denotes the low-order stage of the
counter module, while denotes the low-order
stages of the accumulator).

TABLE III
TWO-PATTERN TEST GENERATED BY TPG(3)

Fig. 6. State diagram of the operation of the control module.

• When (i.e.,), the
generic counter is reset in the next cycle (Phase 1—Step 5
of the TPG algorithm, Fig. 4).

• When (i.e.,) and
(i.e.,) the

counter is clocked one more time and the counter clock is
disabled (from the next cycle), (Phase 1—Step 6).

• When , then the third phase of the PET
algorithm commences, during which the clock of the selec-
tive counter is driven by the divided-by-two clock signal
and the accumulator is reset to 0 every second clock cycle.

• When both the accumulator and the generic counter reach
the value , the end_k_bit_test signal is enabled, to
indicate the end of the -pseudoexhaustive test.

The state diagram of the operation of the control module is
presented in Fig. 6. An implementation of the control module is
presented in Fig. 7.

The detect module is a series of OR-AND gates that detect
the occurrence of certain values at the outputs of the ,

, and buses. An implementation of the detect
module is presented in Fig. 8 for the case . Please note
that, in Fig. 8 the signal is calculated instead of the signal

Fig. 7. Control module.

. The two signals are equivalent, since when
, then the low-order outputs of the accumulator are equal

to 1, hence all outputs of the accumulator are equal to 1. The
implementation of is preferred over the implementation
of , since the former requires less hardware overhead (
gates instead gates required for the calculation of).
Example: In Fig. 8, the case where a (7,4)-Pseudo exhaustive

test is aimed; hence, . Given that for
all , the shaded AND gates are disabled, therefore, only

and affect the values of the signals ,
, , , , detecting the values , , , ,

, respectively, calculated as illustrated in Table IV (denotes
the negation operation). Signal is an -input
AND gate.

III. RECURSIVE PSEUDOEXHAUSTIVE TWO-PATTERN TESTING

In order to generate -PETS for all , one can utilize
the module presented in Fig. 2 and recursively enable for
all values of , . In order to accomplish this, the
module presented in Fig. 9 comprises an -stage

TABLE IV
ILLUSTRATION OF THE OPERATION OF THE 7-STAGE DETECT MODULE OF FIG. 8

Fig. 8. 7-stage detect module.

Fig. 9. Recursive pseudo-exhaustive two-pattern generator.

counter driving the inputs of an -to- decoder and operates as
follows. Initially, the -stage counter is set to 3; therefore the
output of the decoder is . The selective
counter operates as consecutive 3-stage counters and increments
by 001 001 every time it is clocked.

Furthermore, the signal is driven to the c_gen
module indicating that (i.e., the output of the third stage
of the accumulator) will drive the input of the accumulator.
In this way, a two-pattern -PETS is generated at the out-
puts of the accumulator. When the -PETS is complete (i.e.,
when and),
the control module increments the -stage counter to 4; there-
fore, the output of the decoder becomes , the generic
counter is reset to 0, the accumulator is reset to , and a

TABLE V
CALCULATION OF THE HARDWARE OVERHEAD OF THE PRESENTED SCHEME

In [31] it was shown that the hardware overhead of the �-to-2 decoder
is less than �� gates.

It was shown in [10] that the hardware overhead of the OR grid is less
than �� gates.

two-pattern -PETS commences in a similar fashion. When
the two-pattern -PET is complete, the recursive pseudoex-
haustive test is also complete.

IV. HARDWARE AND TEST LATENCY

A. Hardware Overhead

In order to calculate the hardware overhead of the proposed
generator, we have considered that a D-type flip-flop accounts
for eight gate equivalents and a XOR gate for four gate equiva-
lents. The implementation of the generic pseudoexhaustive two-
pattern generator requires the control module and the generic
counter. The recursive pseudoexhaustive generator additionally
requires the -stage counter and the -to- decoder. The hard-
ware overhead of the modules is presented in Table V.

In Table VI, we present the hardware overhead of the generic
and recursive pseudoexhaustive two-pattern generators for the
following cases: 1) none of the required modules exists; 2) an
accumulator exists in the data path; 3) an accumulator whose
inputs are driven by the outputs of a register exists; in this case,
the register can be transformed into a generic counter by adding

2-way multiplexers; 4) an accumulator exists whose inputs
are driven by an -stage counter.

In case this hardware overhead is not acceptable, a software
implementation of the proposed scheme may be utilized, as pre-
sented in a subsequent section, to generate the recursive two-pat-
tern PETS with actually no hardware overhead.

B. Test Latency

The presented generator is not optimal in terms of time re-
quired to complete the recursive pseudoexhaustive two-pattern
test. We define the latency of the recursive pseudoexhaustive
generator over an optimal pseudoexhaustive generator as the

TABLE VI
HARDWARE OVERHEAD OF THE GENERIC AND RECURSIVE AND PSEUDOEXHAUSTIVE TWO-PATTERN GENERATION SCHEME

TABLE VII
TIME OVERHEAD FOR RECURSIVE PSEUDOEXHAUSTIVE

TWO-PATTERN GENERATION

fraction of the clock cycles required to generate all the -sub-
spaces for over the number of clock cycles required for
the generation of the vectors required to cover all -subspaces
for , given by the following formula:

In order to calculate the latency of the proposed recursive
scheme, we shall approximate with (for
this approximation results in an error of less than 4%). Then

Therefore

(1)

In Table VII, we have calculated the latency for various values
of . From Table VII, the value calculated in (1) is a good ap-
proximation for .

Fig. 10. Extension of one-pattern recursive pseudoexhaustive generators to
generate two-pattern recursive pseudoexhaustive test sets.

TABLE VIII
PATTERNS GENERATED BY THE GENERATOR OF [18], [19] FOR � � �

V. COMPARISONS

Although, to the best of our knowledge, no recursive pseu-
doexhaustive two-pattern generation scheme has been presented
in the open literature, some of the schemes that have been pro-
posed for two-pattern generation could be extended to recur-
sively generate all pseudoexhaustive tests. Two-pattern gener-
ation schemes have been proposed by Starke [20], Vuksic and
Fuchs [34], and Chen and Gupta [32].

TABLE IX
RECURSIVE PSEUDOEXHAUSTIVE TWO-PATTERN GENERATORS: COMPARISON

TABLE X
HARDWARE OVERHEAD OF RECURSIVE PSEUDOEXHAUSTIVE GENERATORS: CALCULATION OF HARDWARE OVERHEAD IN GATES

Starke has proposed PETT [20]. In PETT, a nonlinear feed-
back shift register with stages is used for the testing of an

-bit CUT. Assuming that before the insertion of the BIST cir-
cuitry an -stage register existed in the inputs of the CUT, with
PETT n additional flip-flops are inserted (for the formation of
the -stage NFSR). Furthermore, multiplexers are inserted
to the inputs of the register flip-flops, and logic gates (OR) with
totally inputs must be included in order to implement the
non-feedback operation.

Vuksic and Fuchs proved [34] that a multiple input shift reg-
ister (MISR) can generate all transitions if it receives all the

input combinations. Assuming the existence of flip-fops
(stage register) at the inputs of the CUT, the BIST circuitry
requires the insertion of multiplexers, XOR gates and
flip-flops (that will generate the input combinations).

Chen and Gupta [32] investigated how an exhaustive two-pat-
tern test can be generated using either a linear feedback shift reg-
ister (LFSR) or a cellular automaton (CA). Their results show
that for an n-input CUT, an LFSR, or CA with at least stages
is required. Assuming the existence of flip-flops at the inputs
of the CUT, the implementation of the LFSR version requires
flip-flops (for the formation of the stage LFSR) and mul-
tiplexers at the inputs of the existing flip-flops.

The CA-version of the technique requires flip flops (for the
formation of the -stage CA), multiplexers at the inputs of
the existing flip-flops and a number of XOR gates for the for-

mation of the CA rules. In order to calculate the number of XOR

gates, we assume that half of the stages implement rule 90, while
the others implement rule 150. This assumption is justified since
these two rules are the most commonly used in Cellular Au-
tomata applications [19]. Rule 90 requires one 2-input XOR gate,
while Rule 150 requires two 2-input XOR gates.

The above-mentioned schemes have been shown to per-
form very well in the field of exhaustive, or pseudorandom
testing; furthermore, [32] has been also shown to be effective
for -pseudo-exhaustive testing for a specific value of ;
however, since they are based on LFSRs or CA, their extension
to recursively generate two-pattern tests, would require the
formation of different feedback polynomials for an -stage
generator, as well as multiplexers, each one having inputs,
in order to allow for the different feedback polynomials to
generate the required pseudo-exhaustive tests. The hardware
overhead of these multiplexers is gates, which is
prohibitive; for example, for , the hardware overhead
is 3000 gates, which is about 5 times the overhead of the
proposed scheme.

An alternative solution to the problem would be to utilize
one of the recursive pseudoexhaustive one-pattern generation
schemes proposed in [10], [18], [19], generate two-pattern tests
using two generators and multiplex their outputs as presented
in Fig. 10. In this case, one out of two approaches could be
adopted.

Fig. 11. Recursive pseudoexhaustive two-pattern generations schemes: comparison.

Fig. 12. Software implementation of the proposed recursive pseudoexhaustive generator.

According to the first approach, all -bit patterns of the first
generator are combined with all -bit patterns generated by
the second generator. This approach is optimal with respect to
the n-bit two-pattern generation scheme, in the sense that all

pairs are generated within clock
cycles, however the -bit subspaces for are not covered
in optimal time. In order to illustrate this approach, let us con-
sider an input CUT and the 16 patterns generated by
the generators of [18], [19] which are presented in Table VIII.
In Table VIII, groups G1, G2, G3, G4 represent the patterns
required to cover 1-, 2-, 3-, and 4-bit subspaces, respectively.
According to the first approach all patterns T1–T16 of the first
generator are paired with all patterns T1–T16 of the second
generator, covering the 4-bit space within
clock cycles. However, this solution does not guarantee that sub-
spaces for 1, 2, 3 are covered within ,

, and cycles, respectively.
In fact, all subspaces are only guaranteed to be covered within

clock cycles. Therefore, this approach cannot be
considered as a recursive pseudo-exhaustive two-pattern BIST
scheme.

The second approach is to combine all patterns of each group
(i.e., G1, G2, G3, and G4) of the first generator with all patterns
of the respective group of the second generator. Therefore, the
time required to cover 1-bit subspaces is , the
time required to cover 2-bit subspaces is , the
time required to cover 3-bit subspaces is and
the time required to cover 4-bit subspaces is .
Therefore, the total time required for the completion of the test
is given by:

. It is trivial to see that, in this case, the time
required to cover all subspaces is sub-optimal; in fact it is equal
to the time required by the proposed scheme.

In the latter approach, the hardware overhead required in
order to recursively generate all two-pattern tests is two-times
the hardware overhead of the recursive one-pattern generator,

2-input multiplexers, and the additional logic. In order to
implement the control logic, a structure similar to the one
utilized in the proposed scheme will be issued, comprising at
least a group counter with stages, where , and
a module needed to detect the end of the test for each sub-group
(i.e., G1, G2, G3, etc.) with gates overhead.

In Table IX, we compare the proposed scheme with the de-
scribed possible extensions of the schemes proposed in [18],
[19], and [10] in terms of hardware overhead. In the second
column of Table IX we present the modules whose existence
we assume for the implementation of the schemes. In the third
column we present the required transformations, while in the
fourth column we present the gate equivalents required for the
modifications. The term “XOR gates” refers to the number of

for the schemes [18] and [19] and have been quoted from the
respective references. They have been included in the Table
for the sake of completeness. The columns that present the
hardware overhead of the four scheme are the columns denoted
“[18]-#gates”, “[19]-#gates”, “[10]” and “RPET”.

In Fig. 11, we present graphically the quantity HO(n)/n, i.e.,
the hardware overhead as a function of the number of stages,
over the number of stages (we have chosen to divide the hard-
ware overhead over the number of the generator outputs in order
for the comparisons to be more clearly presented). It is evi-
dent that the proposed scheme presents lower hardware over-
head from the possible extensions of the schemes proposed in
[10], [18] and [19] to provide for recursive pseudo-exhaustive
two-pattern testing.

VI. SOFTWARE IMPLEMENTATION

In the case that the accumulator belongs to the datapath of a
processor [8] then, instead of implementing the control module,
the BIST program can be integrated into the memory of the pro-
cessor. In Fig. 12 the segment of code that emulates the BIST
operation is presented. The C-like notation is also given for il-
lustrative purposes.

VII. CONCLUSION

Pseudoexhaustive test pattern generators provide very high
fault coverage without the need for fault simulation or determin-
istic test pattern generation. Various techniques have been pro-
posed for pseudoexhaustive test pattern generation for combi-
national faults. Adjacent bit pseudoexhaustive testing is mainly
targeted to data path architectures that have a strongly bit-orga-
nized character and contain internal buses that are partitioned
into physically adjacent lines [8].

In modern VLSI circuits, containing millions of transistors,
the utilization of the same BIST pattern generator for testing
more than one modules can drive down the hardware overhead,
increasing the applicability of the BIST concept [18]. Modules
whose inputs are driven (during BIST) from the same pattern

generator may have different cone sizes. Recursive pseudoex-
haustive testing has been proposed as a solution to this problem;
in [10], [18], and [19] recursive and generic pseudoexhaustive
generators for the detection of stuck-at faults have been pro-
posed. On the contrary, no recursive pseudoexhaustive two-pat-
tern generator has been presented to date.

In this paper we have presented a two-pattern generation
scheme that can generate both generic and recursive pseudoex-
haustive tests; with this scheme, more than one circuit under
test, possibly having different cone sizes () can be tested in
parallel. To the best of our knowledge, this is the first time in the
open literature that the problem of recursive pseudoexhaustive
two-pattern generation is addressed.

Comparisons of the proposed scheme with schemes proposed
previously to recursively generate pseudoexhaustive one-pat-
tern tests properly extended to generate two-pattern tests, reveal
that the proposed scheme generates the recursive pseudoexhaus-
tive two-pattern tests with lower hardware overhead.

REFERENCES

[1] Ioannis Voyiatzis, Dimitris Gizopoulos, and Antonis Paschalis,"
"Recursive Pseuo-exhaustive Two Pattern Generation",IEEE Trans
Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 1, Jan. 2010. 8,

[2] R. Srinivasan, S. K. Gupta, and M. A. Breuer, “Novel test pattern gen-
erators for pseudoexhaustive testing,” IEEE Trans. Comput., vol. 49,
no. 11, pp. 1228–1240, Nov. 2000.

[3] S. Chattopadhyay, “Efficient circuit specific pseudoexhaustive testing
with cellular automata,” in Proc. 11th IEEE Asian Test Symp., 2002, p.

188.
[4] D. Kagaris and S. Tragoudas, “Pseudoexhaustive TPG with a provably

low number of LFSR seeds,” in Proc. IEEE Int. Conf. Comput.
Des.: VLSI Comput. Processors, 2000, p. 42.

[5] B. Shaer, K. Aurangabadkar, and N. Agarwal, “Testable sequential
circuit design: Partitioning for pseudoexhaustive test,” in Proc. IEEE
Comput. Soc. Ann. Symp. VLSI (ISVLSI), 2003, p. 244.

[6] O. Novak, “Pseudorandom, weighted random and pseudoexhaustive
test patterns generated in universal cellular automata,” in Proc. 3rd
Eur. Dependable Comput. Conf. Dependable Comput., 1999, vol.
1667, Lecture Notes In Computer Science, pp. 303–320.

[7] S. Gupta, J. Rajski, and J. Tyszer, “Arithmetic additive generators of
pseudo-exhaustive test patterns,” IEEE Trans. Comput., vol. 45, no. 8,
pp. 939–949, Aug. 1996.

[8] A. Stroele, “A self test approach using accumulators as test pattern
generators,” in Proc. Int. Symp. Circuits Syst., 1995, pp. 2120–2123.
generators,” in Proc. Int. Symp. Circuits Syst., 1995, pp. 2120–2123.

[10] I. Voyiatzis, “A counter-based pseudo-exhaustive pattern generator for

2004.
[11] D. Gizopoulos, A. Paschalis, and Y. Zorian, “An effective BIST

[12] A. D. Friedman, “Easily testable iterative systems,” IEEE Trans.

Comput., vol. 22, no. 12, pp. 1061–1064, Dec. 1973.
[13] K. Teng, H. Takahashi, and Y. Takamatsu, “A general BIST-
amenableSymp., 2000, pp. 171–176.
[14] W. H. Kautz, “Testing for faults in cellular logic arrays,” in Proc.
8th

[15] R. Parthasarathy and S. M. Reddy, “A testable design of iterative logic
arrays,” IEEE Trans. Comput., vol. C-30, no. 11, pp. 833–841, Nov.

1981.
[16] A. D. Friedman, “A functional approach to efficient fault detection

1365–1375, Dec. 1994.
[17] J. Rajski and J. Tyszer, “Recursive pseudoexhaustive test pattern gen-

eration,” IEEE Trans. Comput., vol. 42, no. 12, pp. 1517–1521, Dec.

BIST applications,” Microelectron. J., vol. 35, no. 11, pp. 927–935,

BIST applications,” Microelectron. J., vol. 35, no. 11, pp. 927–935,

[18] P. Dasgupta, S. Chattopadhyay, P. P. Chaudhuri, and I. Sengupta, “Cel-
lular automata-based recursive pseudo-exhaustive test pattern genera-
tion,” IEEE Trans. Comput., vol. 50, no. 2, pp. 177–185, Feb. 2001.

[19] C. Starke, “Built-in test for CMOS circuits,” in Proc. IEEE Int.
Test Conf., Oct. 1984, pp. 309–314.
[20] R. Wadsack, “Fault modeling and logic simulation of CMOS and

nMOS integrated circuits,” Bell Syst. Techn. J., vol. 57, pp. 1449–1474,
May–Jun. 1978.

[21] P. Girard, C. Landrault, S. Pravossoudovitch, and A. Virazel,
“Compar-ison between random and pseudorandom generation for BIST of delay,

stuck-at and bridging faults,” in Proc. IEEE On-Line Test. Workshop,
2000, pp. 121–126.

[22] A. Virazel, R. David, P. Girard, C. Landrault, and S. Pravossoudovitch,
“Delay fault testing: Choosing between random SIC and random MIC
sequences,” in Proc. IEEE Eur. Test Workshop, 2000, pp. 9–14.

[23] H. Rahaman, D. Das, and B. Bhattacharya, “Transition count based
BIST for detecting multiple stuck-open faults in CMOS circuits,” in
Proc. 2nd IEEE Asia Pac. Conf. ASICs, Aug. 2000, pp. 307–310.

[24] E. Gizdarski, “Detection of delay faults in memory address decoders,”
J. Electron. Test., vol. 16, no. 4, pp. 381–387, Aug. 2000.

[25] M. K. Michael and S. Tragoudas, “Functions-based compact test pat-
tern generation for path delay faults,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 13, no. 8, pp. 996–1001, Aug. 2005.

[26] I. Pomeranz and S. M. Reddy, “On n-detection test sets and variable
n-detection test sets for transition faults,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 19, no. 3, pp. 372–383, Mar. 2000.

[27] Y. Shao, I. Pomeranz, and S. M. Reddy, “On generating high quality
tests for transition faults,” in Proc. 11th ATS, 2002, pp. 1–8.

[28] K. Yang, K. T. Cheng, and L. C. Wang, “TranGen: A SAT-
basedATPG for path-oriented transition faults,” in Proc. ASP-DAC, 2004,

pp. 92–97.
[29] S. Neophytou, M. Michael, and S. Tragoudas, “Functions for quality

transition-fault tests and their applications in test-set enhancement,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 12,
pp. 3026–3035, Dec. 2006.

[30] I. Voyiatzis, T. Haniotakis, and C. Halatsis, “A novel algorithm for the
generation of SIC pairs and its implementation in a BIST environment,”
IEE Proc. Circuits, Devices Syst., vol. 153, no. 5, pp. 427–432, Oct.
2006.

[31] C. Chen and S. Gupta, “BIST test pattern generators for two-pattern
testing-theory and design algorithms,” IEEE Trans. Comput., vol. 45,
no. 3, pp. 257–269, Mar. 1996.

[32] I. Voyiatzis, A. Paschalis, D. Nikolos, and C. Halatsis,
“Accumu-lator-based BIST approach for two-pattern testing,” J. Electron. Test.:

Theory Appl., vol. 15, no. 3, pp. 267–278, Dec. 1999.
[33] A. Vuksic and K. Fuchs, “A new BIST approach for delay fault testing,”

in Proc. Eur. Des. Test Conf., Mar. 1994, pp. 284–288.
[34] I. Voyiatzis, “Accumulator-based pseudo-exhaustive two-pattern
gen- eration,” J. Syst. Arch., vol. 35, no. 11, pp. 846–860, Nov. 2007.

